An algorithmic framework for convex mixed integer nonlinear programs
نویسندگان
چکیده
منابع مشابه
An algorithmic framework for convex mixed integer nonlinear programs
This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in recent years. Wishing to exp...
متن کاملStrong-branching inequalities for convex mixed integer nonlinear programs
Strong branching is an effective branching technique that can significantly reduce the size of the branch-and-bound tree for solving Mixed Integer Nonlinear Programming (MINLP) problems. The focus of this paper is to demonstrate how to effectively use “discarded” information from strong branching to strengthen relaxations of MINLP problems. Valid inequalities such as branching-based linearizati...
متن کاملAlgorithms and Software for Convex Mixed Integer Nonlinear Programs
This paper provides a survey of recent progress and software for solving convex mixed integer nonlinear programs (MINLP)s, where the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have received sustained attention in recent years. By exploiting analogies to well-known techniques for solving ...
متن کاملImproved quadratic cuts for convex mixed-integer nonlinear programs
This paper presents scaled quadratic cuts based on scaling the second-order Taylor expansion terms for the decomposition methods Outer Approximation (OA) and Partial Surrogate Cuts (PSC) used for solving convex Mixed Integer Nonlinear Programing (MINLP). The scaled quadratic cut is proved to be a stricter and tighter underestimation for the convex nonlinear functions than the classical supporti...
متن کاملAlgorithmic Approach for Improved Mixed-Integer Reformulations of Convex Generalized Disjunctive Programs
In this work, we propose an algorithmic approach to improve mixed-integer models that are originally formulated as convex Generalized Disjunctive Programs (GDP). The algorithm seeks to obtain an improved continuous relaxation of the MILP/MINLP reformulation of the GDP, while limiting the growth in the problem size. There are three main stages that form the basis of the algorithm. The first one ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Optimization
سال: 2008
ISSN: 1572-5286
DOI: 10.1016/j.disopt.2006.10.011